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By a simple combination of adaptive scheme and linear feedback with the updated feedback strength, for a
large class of chaotic systems it is proved rigorously by using the invariance principle of differential equations
that all unknown model parameters can be estimated dynamically. This approach supplies a systematic and
analytical procedure for estimating parameters from time series, and it is simple to implement in practice. In
addition, this method is quite robust against the effect of noise and able to respond rapidly to changes in
operating parameters of the experimental system. Lorenz and Rössler hyperchaos systems are used to illustrate
the validity of this technique.
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Synchronization of unidirectionally coupled chaotic sys-
tems and its potential applications in engineering are cur-
rently a field of great interest(see[1–7] and references cited
therein). An interesting application of chaotic synchroniza-
tion is to analyze the time series of chaotic systems when
partial information about the experimental systems is avail-
able[8–12]. Assuming that the number of independent vari-
ables and the structure of underlying dynamical equations for
a chaotic system are known, we address the problem of es-
timating all model parameters of the experimental system.

In Refs. [8–10], some schemes such as autosynchroniza-
tion, error minimization, and the Huberman-Lumer scheme
[13] were developed to solve the above problem. However,
just as stated in[11], these techniques admit a certain limi-
tation. A new online scheme based on the least-squares ap-
proach was recently used to develop a general and robust
method for deriving the dynamical system governing the
evolution of all model parameters of a chaotic system; see
[11]. Note that all methods referred above are almost numeri-
cal. For example, the negativity of all conditional Lyapunov
exponents of the error system is used to guarantee synchro-
nization between systems in these methods. However, it has
recently been reported that the negativity of the conditional
Lyapunov exponents is neither a sufficient condition nor a
necessary condition for chaotic synchronization; see[14,15]
and references cited therein. Due to numerical consider-
ations, some additive parameters(e.g., feedback constants,
etc.; see[10,11]) have to be numerically determined.

In this paper, for a large class of chaotic systems we give
an analytical and systematic procedure to estimate dynami-
cally all model parameters from time series. By a simple
combination of adaptive control and linear feedback with the
updated feedback strength, it is proved rigorously by using
the invariance principle of differential equations that all un-
known parameters can be estimated dynamically from time
series of the experimental system. It is crucial for this tech-
nique to adapt duly the feedback strength of the linear feed-
back, which is different from the traditional linear feedback
where the feedback constant is fixed. The adaptive controller

of parameters—i.e., the dynamical system governing the
evolution of all parameters—and the update law of linear
feedback strength are given explicitly without determining
any additive parameters. When time series for variables of
the experimental system are available, a system consisting of
only 2n+nm equations needs to be solved in order to esti-
matenm unknown parameters of ann-dimensional chaotic
system. Such estimation is quite robust against the effect of
noise and able to respond rapidly to changes in operating
parameters of the experimental system.

We begin by considering ann-dimensional(experimental)
chaotic system in the form of

ẋ = Fsx,pd, s1d

where x=sx1,x2, . . . ,xndPRn, Fsx,pd
=(F1sx,pd ,F2sx,pd , . . . ,Fnsx,pd), and

Fisx,pd = cisxd + o
j=1

m

pij f i jsxd, i = 1,2, . . . ,n. s2d

Here cisxd and f ijsxd are some nonlinear functions, andp
=pij PU,Rnm arenm unknown parameters to be estimated;
U is a bounded set. For the vector functionsFsx,pd, we give
the following assumption.

For any pPU and x=sx1,x2, . . . ,xnd, x0=sx1
0,x2

0, . . . ,xn
0d

PRn, there exists a constant l.0 satisfying

uFisx,pd − Fisx0,pdu ø l maxjuxj − xj
0u, i = 1,2, . . . ,n.

s3d

We call the above condition the uniform Lipschitz condi-
tion, andl refers to the uniform Lipschitz constant. Note this
condition is very loose; for example, the condition(3) holds
as long as]Fi /]xjsi , j =1,2, . . . ,nd are bounded. One may
check easily that the class of systems in the form of Eqs.
(1)–(3) includes almost all well-known chaotic systems such
as Lorenz system, Chua’s circuit, Rössler hyperchaos sys-
tem, etc.

We assume that time series for all variables of Eq.(1), as
the experimental output of the system, are available. To es-
timate all unknown parametersp from these time series, we
introduce an auxiliary system of variablesy=sy1,y2, . . . ,ynd,*Electronic address: dbhuang@mail.shu.edu.cn
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whose evolution equations have identical form to that ofx.
But the corresponding parameters are not same, which will
be set to arbitrary initial values—say,q=qij , i =1,2, . . . ,n, j
=1,2, . . . ,m. In contrast to the experimental system(1), the
auxiliary system can be controlled in practice, which is also
called the receiver system. We consider the linear feedback
control, and the receiver system is given by the following
equation:

ẏ = Fsy,qd + esy − xd, s4d

where the feedback couplingesy−xd=se1e1,e2e2, . . . ,enend,
ei =syi −xid , i =1,2, . . . ,n, denoting the synchronization error
of Eqs.(1) and (4). Instead of the usual linear feedback, the
feedback strengthe=se1,e2, . . . ,end here will be adapted
duly according to the following update law:

ėi = − giei
2, i = 1,2, . . . ,n, s5d

wheregi .0,i =1,2, . . . ,n, are arbitrary constants. The equa-
tions governing the evolution of the parametersq are chosen
similar to the adaptive controller used in[10] and quite sim-
ply have the form

q̇ij = − di jei f i jsyd, i = 1,2, . . . ,n, j = 1,2, . . . ,m, s6d

wheredi j .0,i =1,2, . . . ,n, j =1,2, . . . ,m, are arbitrary con-
stants. Next we will prove rigorously the main results. We
first rewrite system(1) as

ẋ = Fsx,pd, ṗ = 0. s7d

For the system consisting of the error equation between
Eqs. (4), (6), and (7), and Eq.(5), which is formally called
the augment system, we introduce the non-negative function

V =
1

2o
i=1

n

ei
2 +

1

2o
i=1

n

o
j=1

m
1

di j
sqij − pijd2 +

1

2o
i=1

n
1

gi
sei + Ld2,

s8d

whereL is a constant bigger thannl—i.e., L.nl. By differ-
entiating the functionV along the trajectories of the augment
system, we obtain

V̇ = o
i=1

n

eisẏi − ẋid + o
i=1

n

o
j=1

m
1

di j
sqij − pijdq̇ij + o

i=1

n
1

gi
sei + Ldė

= o
i=1

n

eifFisy,qd − Fisx,pd + eieig − o
i=1

n

o
j=1

m

sqij − pijdei f ijsyd

− o
i=1

n

sei + Ldei
2

= o
i=1

n

eifFify,pg − Fisx,pdg − Lo
i=1

n

ei
2 ø snl − Ldo

i=1

n

ei
2 ø 0,

s9d

where we have used the uniform Lipschitz condition(3). It is

obvious thatV̇=0 if and only if ei =0,i =1,2, . . . ,n. There-
fore the setE=he=0,q−p=0,e=e0PRnj is the largest in-

variant set contained inV̇=0 for the augment system. Then
according to the well-known invariance principle of differ-
ential equations[16], starting with arbitrary initial values of
the augment system, the orbit converges asymptotically to
the setE—i.e., e→0, q−p→0, ande→e0 as t→`, where
the converged strengthe0 depends on the initial values.
Namely, the parametersq will approximate asymptotically
the correct values of unknown parametersp starting with
arbitrary initial values.

In order to estimatenm model parameters using this
method, we need to solve the experimental system(1) (when
real experimental data are not available), the receiver system
(3), the update law of feedback strength(5), and the adaptive
equation of parameters(6). So when time series of the ex-
perimental system are available, an extended system consist-
ing of 2n+nm equations needs to be solved to estimatenm
parameters of ann-dimensional system. Obviously, the syn-
chronization of systems(4), (6), and (7) is global from the
above proof, so this estimation approach is quite robust
against the effect of noise and able to respond to rapid
changes of the operating parametersp of the experimental
system (1). In comparison with previous methods for
synchronization-based parameter estimation[8–11], the dis-
tinguished characteristic of our method is(i) analytical and
rigorous because it does not require one to numerically de-
termine any additive parameters(e.g., the feedback constant
and stiffness constant introduced in[10,11]); (ii ) systematic
because the control technique in the form of Eqs.(4)–(6) can
be applied to all chaotic systems satisfying the uniform Lip-
schitz condition(3); (iii ) more simple, e.g., the method de-
veloped in[11] requires to solven+nm+n2m equations for
such problem. Therefore the technique developed here is
very convenient to implement in practice.

Next we will give two illustrative examples. Our first ex-
ample is the Lorenz system

ẋ1 = p1sx2 − x1d, ẋ2 = p2x1 − x1x3 − x2, ẋ3 = x1x2 − p3x3,

s10d

wherex=sx1,x2,x3d form the state space andp=sp1,p2,p3d
are three parameters to be estimated. Assuming time series of
x1, x2, andx3, as experimental output of Eqs.(10), are avail-
able. Then according to the method developed above one
may easily construct the receiver system[Eq. (4)], the update
law [Eq. (5)] of the feedback strengthei , i =1,2,3, and the
adaptive controller[Eq. (6)] of the estimated parameterqi , i
=1,2,3. Due topage limits, we do not rewrite these equa-
tions.

To estimate the parametersp1,p2, andp3, a system of 12
equations, governing the evolution of the(i) experimental
system,(ii ) receiver system,(iii ) feedback strength, and(iv)
parameters, will be solved. We setp1=10,p2=28,p3= 8

3, gi
=15,di =2,i =1,2,3.Starting with arbitrary initial values of
parameters—say,(q1s0d ,q2s0d ,q3s0d)=s6,30,10d—we track
quickly the correct values of all model parameters of the
experimental system(10). Numerical results are shown in
Fig. 1. To consider the robustness against noise, the additive
uniformly distributed random noise in the rangf−2,2g (i.e.,
strength 2) is added to time seriesx1, x2, and x3, Figure 2
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shows that although estimation values of all parameters fluc-
tuate around the corresponding correct values, the fluctua-
tions are very small so that we may estimate all parameters
by a simple averaging over these fluctuations. Similar to the
consideration in[11], we investigate the above method as to
how to respond to rapid changes of the operating parameters.
We rapidly change the values of the model parameters from
p1=10,p2=28,p3= 8

3 to p1=11,p2=35,p3=3 at t=5. Figure
3 shows that the estimation values of parameters converge to
the new operating parameters through a rapid, stable transi-
tions.

Our final example is the four-parameter Rössler hyper-
chaos system

ẋ1 = − x2 − x3, ẋ2 = x1 + p1x2 + x4, ẋ3 = p2 + x1x3,

ẋ4 = − p3x3 + p4x4, s11d

wherep1,p2,p3, andp4 are four parameters to be estimated
from time series x1, x2, x3, and x4. Similarly, let p1
=0.25, p2=3, p3=0.5, p4=0.05; the correct values of all

model parameters can be quickly estimated starting with ar-
bitrary initial values of the parameters—say,qs0d
=s0.1,2.8,0.4,1d; see Fig. 4. Figure 5 shows that when an
additive uniformly distributed random noise in the rangef
−0.01,0.01g is present in the time seriesx2, the estimation
valueq1 fluctuates slightly round the correct value ofp1, and
the values of the other three parameters are estimated more
quickly. Figure 6 shows that the estimations are able to track
the new parameters through a transition when a perturbation
is added to the operating parameterspi , i =1,2,3,4, of the
experimental system(11) such that each of them is increased
by 10% att=10.

These numerical examples show sufficiently that the de-
veloped method is very effective, quite robust against the
effect of noise, and able to respond quickly to changes of the
operating parameters in the experimental system.

We stress again that systems in the form of Eqs.(1)–(3)
are so general that they include all well-known chaotic
systems—e.g., all examples used in[8–11]. To summarize,
for this class of systems we have given a rigorous, systematic

FIG. 1. Temporal evolutions of three parametersq show that the
model parameters of the Lorenz system(10) are estimated precisely.

FIG. 2. The estimation valuesq fluctuate slightly around the
correct values ofp, respectively, when noise with strength 2 is
added to time seriesxi, i =1,2,3, of theexperimental system(10).

FIG. 3. The temporal evolutions of three estimation values when
the operating parameters of system(10) are changed top1=11, p2

=35, p3=3 from p1=10, p2=28, p3= 8
3 at t=5.

FIG. 4. The correct values of four model parameters of the
Rössler hyperchaos system(11) are estimated starting with arbitrary
initial values of the parameters—say,qs0d=s0.1,2.8,0.4,1d.
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procedure to estimate all model parameters from time series
by the synchronization based on a simple combination of
adaptive control and linear feedback with the updated feed-
back strength. This approach is able to estimate all unknown
parameters of a chaotic system in an online setting, but also
is quite robust against the effect of noise and able to respond
rapidly to changes of the experimental operating parameters.
In comparison with previous methods for synchronization-
based parameter estimation[8–11], the distinguished charac-

teristic of our method is systematic, analytical, and even
simple to implement in practice. A possible application of
this method is to secure message transmission using param-
eter modulation. We also believe this method can be gener-
alized to the case of discrete dynamical systems by using the
invariance principle of difference equations.
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FIG. 5. Only the estimation valueq1 is slightly affected when
noise with strength 0.01 is present in the time seriesx2 of system
(11).

FIG. 6. The estimations are able to respond quickly when each
of the operating parameters of the experimental system(11) is in-
creased by 10% froms0.25,3,0.5,0.05d at t=10.
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